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Nonlinear motion of optically torqued nanorods
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We apply light torques to single optically trapped glass nanorods suspended in water. The resulting motion
is studied experimentally and consists of two distinct regimes: a linear regime where the rod angle increases
linearly with time and a nonlinear regime where the rod angle changes nonlinearly, experiencing accelerations
and rapid reversals. We present a detailed theoretical treatment for the motion of such nanorods, which agrees
extremely well with the observed motion. The experiments are carried out so that the trapped and torqued
nanorods move without influence from surfaces. Such a model system is critical to understanding the more
complex motion that occurs near a surface. Studying such nonlinear motion both free of, and near, a surface is
important for understanding nanofluidics and hydrodynamic motion at the nanoscale.
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I. INTRODUCTION was limited to 20 mW, and we could not escape the effects
. ] ~of a nearby surface. To understand the complex influence of
A major success of modern optics has been the applicasyrfaces on the motion of nanoparticles, one first has to
tion of light forces to microscopic and nanoscopic particlesciearly understand the motion of the particles when they are
[1]. Recent efforts have also been concentrated on applyingompletely free of the surface. In this work, we have devel-
light torques at the micro- and nanoscale in optical trapgped a method that frees us of surface effects. The resulting
[2-12]. Several of these techniques use optical birefringencenotion is nonlinear, and can be understood using equations
and polarized light to exert torques,6,10, while others use  of motion that are nonlinear, yet simple to solve in a point-
shape birefringence of asymmetric particles and linearly pogjipole approximation. The results presented here incorporate
larized light to exert torquef2,11,12. Torques can also be 3 range of motions, including behavior near and beyond a
applied with electromagnetic radiation other than lift8].  saqdle-node bifurcatiohl5]. The observed motion agrees
We also note that an early paper on optically trapped tobacc@e|| with our model. This model, of an asymmetric, induced
mosaic virus(TMV) [14] suggested that the TMV nanorods noint dipole, under the influence of an optical torque is simi-
experienced an optical torque in the trap, and oriented parajyy to a driven, damped pendulum in the high damping limit
lel to the electric field. _ [16]. This model applies to other interesting systems, such as
Many of these optical torque papers ignore surface eftooperative flashing by a colony of firefligs7—20, to the
fects. However, it is obvious and interesting that the ianu-ﬁring and propagation of a signal pulse down a neujrsj,
ence of a surface is important in understanding the motion ofnd to the phase difference across a Josephson juri2n
objects experiencing an optical torque. Recent research on |4 the next section we discuss the experiment; afterward
optical torques on micro- and nanoscale objects has revealgge review our model of the motion under the conditions of
that the motion is very complex. For example, in our earliefihe experiment. Next we present experimental observations
work on optically torqued nanorods, novel rocking andangd results. Then we analyze the results and compare the

chirped motions were observed for motion near a surfafe  gpserved motion with the theoretical model. At the end, we
This motion is still not completely understood. Motion of yresent some final conclusions.

wax microdisks torqued in a linearly polarized optical trap
exhibited dynamic Hopf bifurcation, and resulted in periodic
oscillation when brought near a wéll1]. There is even dis- Il. EXPERIMENTAL SETUP
agreement in the literature about whether a flat disk can be
torqued by applying linearly polarized trapping ligh,12.

In this work, we apply light torques to asymmetric nano-
rods using a light-polarization optical tr@p]. Here we used
a single beam trap, with light focused through the objectiv

The basic optical setup consisted of an optical tweezers
apparatus that used linearly polarized light from afi laser;
see Fig. 1. Cylindrical borosilicate glass rods of average di-
ameterd=500 nm and lengths of 1—-am were optically

f dard briahtfield mi dv th ) rapped and torqued. The glass nanorods were suspended in
of a standard brightfield microscope, to study the motion o oier hetween two microscope cover slips. The nanorods

dielectric nanorods under optical torques. In our previous, . e held transversely in the optical trap, in the middle of

experiments, the optical trapping and torquing laser POWeHhe microscope slide sample, by laser light at wavelength

=514 nm focused through a 180 NA=1.25 infinity-
corrected objective. Light polarization was controlled by ad-
*Electronic address: bonin@wfu.edu justing the angle of a half-waveplate relative to the light's
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Half-wave plate dipole p will move to align with the electric fielde to minimize

energy. Hence, a torque=p X E exists about an axis out of the
FIG. 1. (Color onling Diagram of the optical layout of the op- plane of the paper. The light propagation direction is into the paper.
tical tweezers. Rotation of the linearly polarized light by rotation of
a half-wave plate applies a torque to the nanorods in the samp

e lﬁmction to the beam profile measured using a CCD camera
between the two objectives.

placed at the location of the objective’s entrance aperture.
Neutral density filters were used to reduce beam irradiance to
below the saturation level of the camera. The objective’s
entrance aperture diameter is 8 mm. By significantly under-
filling the objective’s aperture, the beam waist at the focus is
o . ; correspondingly increased. We estimate, from the waist mea-
was limited to single-beam trappmg powers of 20 mW. Nsured at the entrance aperture, that the beam waist at trap
s_,uch a trap, we observed _that if the trapped_nanorods WeR . s was 0.554m. This can be compared to the
lifted off the microscope sI|<_je surface by a distance greateliteraction-limited case, where a beam waist at the objective
than or about equal to their length, the rods would orient, i ance 0Dy rancd 4=2 mmwould produce a waist at the

themselves axi_ally in the trap. This means that the ro_d?rap focus of 0.2um [21]. The latter number is what is ex-
would have their long axis along the laser beam propagatloBected for an objective of NA=1.28ike our§ and is the

faX'S; sgle F_'Ig' 2. This Iotng|tud|nal_or|entat|on_ IS e?er?ﬁt'calgresult of diffraction theory, so it is somewhat smaller
avorzil( et' o_tcarlry Oltj t(;ur pref.\wou_s exgerlfmetr;]s, ? ro ¢ =85%) than the Rayleigh criterion result. Since increasing
were kept quite close to the surlace in order for the surtace tg, trapping focal waist decreases intensity, we used a more

prevent them from orienting axially. powerful Ar* laser than in the previous experiments, and we

A rod in a beam with infinite waist will orient along the L
o S o . - used one capable of delivering up to 500 mW of power at
electric field direction. This is confirmed by the early Ashkin 514 nm. This method succeeded in trapping and torquing

work on TMV rods[14], which indicates that smaller rods - - y
(300 nm long will orient along the field in a diffraction- ?zfcr;c;rods well away from the glass slide and coverslip sur

limited beam waist spot. This evidence suggests that by in-
creasing the beam waist, it will be less energetically favor-
able for a rod to be oriented vertically. Hence, to circumvent Ill. THEORY OF THE MOTION

our previous restriction of trapping the rods near a surface, 1o pasic optical setup consists of an optical tweezers

we increased the beam waist at trap focus from the nominal,nara1s that uses linearly polarized light. A sketch of a
minimum of 200 nm, to a value significantly larger. This was nanorod in such a light field in the trapping plane is given in

achieved by collimating the laser beam to a beam waist Ofjy 3 Nearly all previous light-driven torquing experiments
0.650+0.015 mm at the entrance aperture of the trappin —5,7-9,12,2% involving micron-sized objects, can be un-

objective. This value was determined by fitting a Gaussiarye stood with ray optics. In contrast, here the important par-
ticle dimensiond is as small as half the wavelength of light,

@ % in the regime between Rayleigli<\) and ray optics(d

original polarization axis. The half-waveplate rotates the po
larization direction of transmitted light by twice the angle of
rotation.

In our previous apparatyg], we used an Afrlaser that

>\). Sinced=<\, and since we plan to investigate even
% - smaller spatial regimes, we discuss the basic light-particle

é interaction in the Rayleigh limit. We assume the trapped par-
(&) (b)

ticle is a homogeneous, asymmetric, nonabsorbing dielectric
object immersed in a dielectric liquid. The linearly polarized
FIG. 2. A sketch of the orientations possible for nanorods de-e|e‘i:frIC field of;[he laser beat induces a dipole moment
scribed here. The nanorods are trapped in a focused Gaussian beff @-E, wherea is the polarizability tensor of the nanopar-
propagating down. Iifa), the nanorod is transversely oriented with ticle. The light field applied to an asymmetrically shaped
respect to the light propagation axis. (i), the nanorod is axially ~particle induces a dipole moment that is not parallel to the
oriented. inducing electric field.

oy
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To minimize energy, the induced dipole momenivants  cal” frequency Q.. In the case wher&d is below Q.
to align with the field; see Fig. 3. The optical torque, given(2/Q.< 1), there are two solutions, one stable and one un-
by 7=p XE, is proportional to the polarizability difference staple. The stable solution is for('j,zo' and ¢
Aa=aj-a,, whereq), a, are the polarizability components = arcsir{(2/,). In the laboratory frame, where the nanorod
parallel and perpendicular to the long axis of the rod. In theangle 9=Qt- $/2, the nanorod anglé rotates at the same
Appendix, we briefly derive the relation between the torquerate as the laser polarizatiofy, but lags in phase by/2.
and the polarizability anisotropf« in the Rayleigh particle  ppysically, the rod continuously and smoothly rotates at the
regime. _ same rate as the laser polarization, i.e., its rotatigrhisse-
The other torque acting on the nanordeden they are |ockedto the polarization rotation. As the polarization rota-
moving) is that due to Stokes drag by the mediiweted.  {ion rate increases, thed./Q— 1. Here, the stable and un-
From Newton's second law, we can write the basic equatioRiaple points converge to form a saddle-node bifurcation

of motion as [15]. Physically, the polarization rotation rate equals the criti-
2 d cal frequency, i.e.)=0Q..
IEG: Nsin2(Qt-6)] - yd—ta. (1) In the second case, whefkis above(). (1/Q.>1), Eq.

_ o _ (3) shows thaté >0, which means the solution is periodic
Herel is the moment of inertia of the nanoro@js the angle  anq exhibits a limit cycle in phase spaggversusa). In the

of the nanorod axis with respect to a fixed laboratory framephysical laboratory framep>0 means thaft> ¢ and so

e N=— 204 i ; o
gxgsr, c’)\ln_e gci%ia/ﬁc Iil(tahesetgr?huee Aamgmgzﬂgnt%:\;ragﬁ; the laser polarization rotates more rapidly than the nanorod.
v pt yele, PPENKIIE | gu Physically, this will cause the laser polarization to move far

rotation frequency of the light polarization axis; apds the o\ 1h ahead of to flip the direction of torque, which will

a.ngular dradg ?Tcﬁ’gg]'clﬁ?t from tfm';?s tlr‘]"‘W for ro:jatlon IN"a:ause the nanorod angular velocity to decrease and become
;nsécou?trr?e Ilu i f Ide ‘i“tﬁ” II yEOt!S ef;?uatlre magni- negative. Hence the nanorod will rotate in a direction oppo-
u $h2 eqigt%%”gf ';Otif‘)n Cznoi)"’; ";Ltoimoe d:?n%nsionlesssne to its original direction, i.e., it will ‘flip back.” This

. . ; le, of i i le with ti “flip-
form with the following changes: introduce the parameterCyc e, of increasing angle with time, punctuated by "flip
QO.=N/7y, defineu=2Q.t, go to a corotating framé&otating

with the angular frequency of the rotating electric field po-

backs,” where the angle decreases with time, continues with-
out change as long as experimental conditions remain the

larization, (), and define=2(Qt- ). With a little algebra, same.
we can then write Eq(1) as
IV. RESULTS
200, - Q
y ¢+ ¢= EC —sing, (2 The data consisted of a stream of video images that could

be analyzed after the experiment ended. Figure 4 shows
where each overdot indicates a derivative with respect, to g montage of images corresponding to the motion of a
i.e.,d/du. Under our experimental conditions, where the mo-3.8-um-long nanorod being driven at a laser polarization fre-
ment of inertia of the object is extremely small, the first termquency that is below the critical frequency, i8.< Q.. This
on the left hand sidéhe inertial term is entirely negligible.  nanorod was 24:m above the bottom surface of the sample
For example, typical experimental values for the coefficientsand about 7um from the nearest top surface. Hence it was
in this term arel =3x 102 kg n? (glass nanorod length of more than 20 radii away from the closest surface, and surface
3800 nm, radius of 250 nm =30 rad/s, andy=3.8 effects are negligible.
X 10 % kg n?/s. These values make the coefficient small, Figure 5 shows a sequence of images that corresponds to
e.g., 2Q./y=4x10". For comparison/Q:;=0.1-10. the motion when the laser polarization rotation frequency
Hence, the inertial term in Eq2) can be neglected in our exceeds the critical frequency, i.€,> (.. This sequence is
analysis. a small set of a much larger set of 160 images that recorded

We now consider solutions to the equation of motion,the motion under the same conditions.

which has the form

¢ = 2 -sin¢. 3 V. ANALYSIS AND DISCUSSION

Qe The resultgsequences of images for a given laser polar-
This is a nonlinear first-order differential equation describingization rotation rat€)) were analyzed frame-by-frame using
the angular motion of the nanorods in a rotating frame. Equaan angle tool in an imaging software program. This tool was
tion (3), which is very close to the model of a driven, used to determine the angle of the rod in each image with
damped, simple pendulum when the damping dominates theespect to the horizonta axis. This angle corresponds &
inertia, has been discussed in the literafur®] and in text- in Fig. 3. The time difference between two adjacent images
books[20]. Actually, Eq.(3) is a model for the synchroniza- was about 33 ms, since the frame rate of the camera was
tion of the flashing of fireflied17,18 and for the phase 29.97 Hz(RS-170 standayd Hence the data extracted from
difference in the flow of current in a Josephson juncfidd).  each frame of a given set of imagéied (1) were the time,
The character of the solution to E@) differs depending on t, and the rod orientation anglé, at that time. Tables of the
whether the driving frequend is below or above the “criti-  resulting time-angle pairét, ) were then used to plot the
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FIG. 4. A sequence of images showing the motion of a nanorod under the influence of the light torque with a phase-locked response, i.e.,
the rod keeps a fixed phase difference with respect to the rotating polarization of the light. The motion is counterclockwise from left to right,
as indicated by the crossé$) that follow one end of the nanorod for all 16 images. We show one complete period and in this case the
angular polarization rotation rate wés=27 X 2 Hz. Scale bar corresponds tqun.

time-dependent evolution of the laboratory orientation of theing a flipback, the rod momentarily reverses direction. The
nanorods under the influence of the optical torque. Here wenotion appears basically “linear,” and the amplitude and fre-
present plots of the motion of the rofyersust, for the two  quency of the flipbacks change with time. There are shorter
different classes of the motioffi) linear, phase-locked mo- sections of the data in which the flipbacks are periodic, as
tion, where Q<) and (ii) nonlinear motion, where} discussed below. However, for conditions near the critical
> frequency, the periodicity of the flipback regions is irregular

Case 1: Phase-locked motiof <().). In Fig. 6, we have over long times, for reasons that will be described shortly.
plotted the rod angle versus timeyversust, under the con- When the laser polarization frequency is well above the criti-
dition where Q=27x4.06 Hz and Q.=27X4.8 Hz () cal frequency, flipbacks are more periodic and more frequent,
<Q.). The method used to deduce a value for the criticaresulting in an even lowe# versust slope.
frequency(, is given below. The solid line in Fig. 6 repre-  Note that both regions of motion are solutions to the non-
sents the best linear fit to the data. This line exactly coincideinear equation of motion Eq3). However, we classify the
with the line corresponding to the electric field polarizationmotion as linear or nonlinear using the following rulieear
angle versus timgQOt versust), which has a slope of) motion refers to the motion where the angle of the rod
=2mX4.06 Hz, compared to the best-fit slope ofr2 changedincreases or decreagdmearly with time; nonlin-

X 4.057 Hz. Since the two slopes agree to better than a pa@@r motion refers to the motion where the angle of the rod
in 2000, it is clear that the rod’s motion follows the rotation changes nonlinearly with time.

of the electric field polarization with high fidelity. Data at
other values of) < (). agreed equally well with the model in
each case.

Case 2: Nonlinear motiori{2 >.). In Fig. 7, we have To better understand the motion, to compare our observa-
plotted the rod angle versus time versust, under the con- tions to theory, and to estimate a value(f, we consider a
dition whereQQ=27 x5 Hz andQ.=27Xx 4.8 Hz(Q1>Q,). short part of the motion in the nonlinear cagmse (2)

The solid line represents the electric field polarization angleabovd. We study data wher€) is close to the critical fre-
versus time(Qt versust). Notice that the rod motion here quency().. In Fig. 8, we have selected out the rod angle
differs in two key ways compared to the first case. First, theversus time points from Fig. 7 for the region 2.5%6
average slope of the rod angle is significantly lower than the<3.7 s. These data have been shifted so their origin is at
slope of the electric field polarization angle. Second, notéimet=0 in Fig. 8. The solid line in Fig. 8 corresponds to the
that there are repeating occurrences of regions where tHeest fit of the solution to Eq3) to the data in this region. In
slope of the rod angle becomes negative. These regiortbe fit, three parameters were varied: the angular polarization
where the rod angle decreases are labeled “flipbacks.” Durotation rate((}), the critical frequency().), and a constant

A. Specific caseQQ=Q,

FIG. 5. A sequence of images showing the motion of a nanorod under the influence of the light torque with a nonphased response, i.e.,
the rod is not moving in phase with the rotating polarization of the light. The motion is counterclockwise from left to right, as indicated by
the crosse$+) that follow one end of the nanorod for all 16 images. It is clear that the nanorod periodically reverses direction, as in frames
7 and 15 here. The angular polarization rotation rate Wa®7 X5 Hz. Scale bar corresponds toudn.
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FIG. 6. A plot of the nanorod orientatiofias a function of time 0 1 2 3 4 5 6
t for linear motion. Here()=27 X 4.06 Hz and().=2mX 4.8 Hz, time (s)

s0 (1< (.. The solid line represents the best linear fit to the data. ) ) . i
FIG. 7. A plot of the nanorod orientatiofias a function of time

phaseg, i.e., p=2(Qt-0)+ B in Eq. (3). The fit was done t for nonlinear motion. In addition, we have plotted the laser polar-
using a nonlinear least-squares Marquardt-Levenberg teclieation rotation anglé)t during the same time. This corresponds to
nigue iNMATLAB using the ode45 differential equation func- the case wher€=27Xx5 Hz andQ = 27X 4.8 Hz.
tion to numerically solve the nonlinear differential equation
Eq. (3) each time. The final values for the fitting parametersnificantly, and mechanical noise is coupled into the table or
were)=2mx5.14 Hz,Q);=27 X 4.90 Hz, ang3=1.65 radi-  mount that holds the stepper motor. A key indicator that the
ans. For these data, the electric field polarization rotation rateotor-half-waveplate system worked very periodically in our
was set to 2rxX 5 Hz, according to the setting on the pulse setup is the data in the linear regime; see Fig. 6. Here the
generator driving the stepper motor that determines the rotatata show a very linea# versust motion response, which
tion rate of the half-waveplate. Hence the fitted value for thiscould only result if the motion of the motor-half-waveplate
parameter of()=27x5.14 Hz is within 3% of the value system is very linear. However, note that the motor response
expected by the setting on the motor driving the half-differs at different frequencies.
waveplate. It appears that the theory fits the data rather well Second, we consider possible changes in the critical fre-
for appropriate values of the parameters. Hence, in both thguency().. Changes i),=N/vy can occur due to changes in
linear and nonlinear motion regimes, the model summarize¢he torque amplitudé or drag coefficienty. It is unlikely
by Eq.(3) does an excellent job. that the drag coefficient changes during a run, since it de-
We have now provided enough analysis of the data tgends on very stable physical parameters: rod length, rod
discuss the motion in Fig. 7 in complete detail. As alreadydiameter, and fluid viscosity. In contrast, it is almost assured
mentioned, there are sections where the motion is periodighat the torque amplitud&l=—A«E3/4 changes under the
sections that have irregular or changing periods, and there isonditions of the experiment. The irradiance of the laser can
even a region that is lineafin the time range 1.2st  vary due to thermal drift, pointing direction drift, or varia-
<1.7 9. Note that this linear region has a slope identical totions, or due to variations in the power supply electronics
the slope of the laser polarization angle line. These irregudriving the laser plasma tube. These variations are estimated
larities in the period of the nonlinear motignharacterized to be less than 3% during the time of our experiméatsut
by solutions to Eq(3)] and the linear motion region present 2—3 ). Two optical elements in our experiment also gave
on the same curve indicate that the critical frequency, or theise to variations in laser irradiance delivered to the nano-
laser polarization frequency, change during a data run. For

example, a changing critical frequency could explain the data
plotted in Fig. 7. For most of the data, the motion is nonlin- 25
ear and()>().. However, for the linear motion in the time @20
range 1.2 sxt<<1.7 s, the critical frequency could have risen g 15
above the laser polarization frequen€y to produce the g
phase-locked motion typical of the linear motion regime. @10
Thus, we need to discuss the experimental conditions that 5
could lead to changes i€} or (), during a data run.
First, we consider possible changes in the laser polariza- 0
. . 02 04 06 08 1 1.2
tion frequency(). Changes in() can occur due to stepper time(s)

motor variations in rotation rate. The stepper motor that ro-

tates the half-wave plate is driven by square pulses from a FIG. 8. A plot of the nanorod orientatiofias a function of time
frequency generator. These pulses are periodic to better tharhe solid curve corresponds to a nonlinear least-squares fit to the
1%. However, all motors, including the one used here, haveata. The final values for the fitting parameters wéle 27
resonant frequencies at which the motor body vibrates sigx 5.14 Hz,Q.=27x4.90 Hz, and3=1.65(see text for details
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Q =29.7 rad/s
30+ ; <d—6> =0 -02- 02 (4)

' dt
The solid curve in Fig. 9 in the regidid > (). corresponds to
Eqg. (4). For Q< (), the slope is unity. By fitting the whole
range of data to these two functionf3, can be determined.
In this case we obtain a value slightly lowef).=2m
X 4.73 Hz, than thd). determined by fitting the data in Fig.
8, whereQ);=27X4.90 Hz.

25

204

<dérdt>(rad/s)

5- B. Effect of Brownian motion

It is important to discuss how Brownian motion would
affect the observations and results presented here. Brownian
motion refers to the random motion of a particle suspended
in a medium due to the random collisions of medium par-

FIG. 9. Plot of the average nanorod rotation raté/dt) versus  ticles with the object. To determine whether noise from
the laser-polarization-rotation ra@. For values ofQ<(Q,, the ~ Brownian motion is important, we need to estimate the
dependence is linear. Fd® >0, the rod rotation rate declines change in angle due to Brownian motion during the time it
monotonically as) is increased. In both regions, the solid curves takes to record one imagéd /30 9. For a one-dimensional
represent the fitted function; fd2 <(), the function is linear and random walk, the mean-square angle of rotation during a
for Q> (), the fitted function is given in Ed4). Vertical error bars  time t is [23]

are about 1% of thg values, while the horizontal error bars are 3%
of x values. (%) =2Dit, (5

where the rotational diffusion constabt is

0 T : T T
0 20 40 60
Q(rad/s)

rods. The half-waveplate would vary the irradiance at the _kT
sample by +2.5%. This value was determined by measuring Dr = 7
the laser power transmitted through the microscope objective ) )
with an accurate power meter. The transmitted power, medJ€r€K is Boltzmann's constant is the temperature, ang
sured as a function of the half-waveplate angle, systematf—s the rotational drag coefficient, |dentlpal to the term found
cally varied by 5%. Another optical element present in the'" Eq. (1) _Fpr a_rod of lengttL and radiusr, the rotational
experiment, but not shown in Fig. 1, was a nonpolarizingOlrag coefficient is

(6)

beamsplitter. Placed just after the half-waveplate, it was used w7y L3
for monitoring and alignment purposes. The measured varia- Y= 3 ' ()
tion in laser power as a function of laser polarization angle In(—) -0.66

was also 5%(+2.5%). The variations in laser power, and
hence critical frequency)., could easily explain the varia- where » is the viscosity of the surrounding medium. Using
tion in the periodic motion under nonlinear motion condi- the usual numbers for viscosity of water, and the dimensions
tions, or under conditions near the critical frequency. Wefor the rod herg(L=3.8 um and radius=250 nmwe find
reiterate that, at laser polarization frequencies well above the=3.7X 103 g cn?/s, and thatD,=0.11 rad/s. Hence,
critical frequency, straight sections whose slope eqQatto ~ during the time it takes to record one ima@&egration time
not occur, and the motion has periodic and more frequerf @ frame, 33 ms the rod has an rms rotation af{(¢?)
flipbacks that significantly reduce the slope of theersust ~ =0.085 radians/frame. For comparison, close to the critical
data. frequency the rod rotation rate due to the optical torque is
Finally, we mention another way to determine the critical@bout 30 rad/s, which is about 1 radian each frame. Hence,
frequency under the existing experimental conditions. It refotation due to the light torque is a factor of 12 higher than
quires analyzing data over the whole range of Iaser-the cor_resppndlng rotation due tq Brownian motion dyrmg a
polarization-rotation frequencieQ. Below the critical fre- 9iven time interval. For perspective, note that the size of a
quency, the rod rotation frequency follows the driving, Iaser-data point symbo_l n Fig. .GS.O"d CII‘.C|6$ corresponds to an
polarization-rotation frequency and sw/dt=0 (Q<Q,). angle of 0.85_ radlang. This is 10 times Iarger than the noise
However, wherQ)>Q, thend@/dt is not constant, but the due to Brownian motion during the time of a single frame for

: . such a data point. Hence the Brownian noise contributes in a
average frequencydé/dt) can be determined from a linear small way to the overall noise displayed in the figures.
fit to the 6 versust data. Then curves like Figs. 6 and 7 can

: - As a final note, we briefly mention the importance of
be summarized in a plot @t/ dt) versus() over the whole  ysing longer nanorods to observe the linear and nonlinear

range of laser-polarization-rotation frequencies. The resultbehavior(linear below, and nonlinear above, the critical fre-
ing curve of(d¢/dt) versus() is given in Fig. 9. It can be quency(,). In fact, smaller rods remained in the region
shown that for() > Q) below the saddle node in all the small rod cases we tried
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(generally their length was &m or les$. Hence, smaller o
rods did not exhibit the transition through the saddle node

bifurcation. The reason for this is that longer rods have a OCJ_

much higher rotational drag coefficiemtsincey= L2, where \

L is the rod length, see E@7). For larger rods, this has the

effect of lowering the critical frequency into an experimental

range where the saddle node bifurcation can be observed.

This also has the advantage of helping decrease Brownian A 2+
rotation, since the diffusion constant depends inversely on
drag coefficienty. Also the data analysis is easier with a

larger object. We could also have lowered the torque ampli-
tudeN to get into a range where the transition behavior was |G, 10. Sketch showing the tensor components in the body
apparent. However, this has the deleterious effect of alsgame of the rod.
lowering the trapping depth, which would make the relative
Importance .Of Brownian motion greater. In_ adquncould simple case of an applied electric field that is a plane wave of
have been increased by increasing the viscosity of the me

. . ; . the form
dium. For example, a 50% glycerin-water mixture would in-
crease the viscosity a factor of 2.5. However, the optical
properties of the sample would change and the trapping
depth would have been lowered. Finally, the polarization ro- )
tation rateQ) could also be used to put the motion into the Where the symbol c.c. refers to the complex conjugate of the
range to see the transition behavior. This would have reterm that came before it. The electric dipole induced by this
quired using a different motor or different gearing to increasdfield can then be written
or decrease the rotation rate.

E(r,t) = %[Eo(r)e“‘“t +c.cl, (A1)

1 .
p(r,t) = 5[po(r)e""’t +c.cl. (A2)
VI. CONCLUSIONS

We have presented detailed experimental results on th-lt;he amplitudepo(r) of the oscillating dipole is given by

nonlinear motion of glass nanorods optically torqued by ro- po(r) = a - Ey(r), (A3)
tating linearly polarized light. The experiments were con- o - -
ducted far from surfaces, making the resuits extremely usefdffn€re @ is the polarizability tensor. A tensor description of
for understanding the basic physics of optically torqued na!l® Polarizability is important because the torque on our par-
norods. We have also provided an approximate point-dipoldC!€s arises from the property of shape birefringence. Asym-
model for the optically torqued nanorods that gives goodMelrically shaped particles, such as rods, disks, and ellip-
agreement with experimental results. Our observations, angP!dS: have differing polarizabilities along the principal axes.
the nonlinear equations of motion, show that there are twd " details on shape birefringence, consult an advanced text

distinct types of motion: phase-locked rotation and flipbackOn classical electrodynamics or light scatteri@g—217. It is
motion. For driving frequencies beyond the critical fre- important to note that the tensor polarizability causes the

quency, the motion exhibits nonlinear, flipback oscillations Nduced dipole moment to point in a direction that is not
This model system will serve as a benchmark for understancﬁlong the electric field direction; see F|g. 3. The polarlzabll-.
ing the motion in more complex regimes, such as motiorty tensor can be expressed as a matrix, which becomes di-

near surfaces. Already, work on optically trapped disks ha@donal if we consider the opticabody) axes of the glass

provided some valuable insights into the rheological behay®d: S€€ Fig. 10. Thus in this appendix the coordinate system

ior of polymer solutions at the nanosca4]. WiII_ co_rrespond to the body axes given ir_1 Fig_. 10. For_a
cylindrical glass rod, we can write the polarizability tensor in

this frame as
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To evaluate Eq(A5) for our geometry, define the instanta-

neous angle between the electric field and the point dipole to
be B=Ot-6 (see Fig. 3 Writing both the field amplitude

In this appendix, we derive an expression for the lightEq(r) and the dipole amplitudey(r) in terms of the body
torque on an induced point dipole; see Fig. 3. Consider thaxes of the rodsee Fig. 10 we have

APPENDIX
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Eo=Enéx+ Eo,8, = Eo(COSBE +sinB8)  (A6) =&,E5(cog wt)(q; - a,)cosB sin B.
(A10)

Since the anglg8 changes very slowly on an optical time
(A7) scale, we perform a time average of the torque over one
optical cycle, T=2#/w. This time average, denoted by angu-
lar brackets, givegcos wt)=1/2. Using this, the trigono-
metric relation cog sin 8=(1/2)sin 28, and substituting3
=QOt-0 gives an expression for the time-averaged torque

and

Po = axEoxex + anyOyéy = aHEOxéx ta, EOyéy-
The torque Eq(A5) is then

€ & & (time-averaged over one optical cycle
p(t) X E() = |qEx @, Egy O |coSwt  (A8) 1 i
Eowk Eo O (= 7B -a)sin20t- 0%,  (A1D)

A This expression is the first term on the right-hand side of Eq.
:eZ(C052 wt) EOxEOy(a'II —a,) (A9) ).
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