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We apply light torques to single optically trapped glass nanorods suspended in water. The resulting motion
is studied experimentally and consists of two distinct regimes: a linear regime where the rod angle increases
linearly with time and a nonlinear regime where the rod angle changes nonlinearly, experiencing accelerations
and rapid reversals. We present a detailed theoretical treatment for the motion of such nanorods, which agrees
extremely well with the observed motion. The experiments are carried out so that the trapped and torqued
nanorods move without influence from surfaces. Such a model system is critical to understanding the more
complex motion that occurs near a surface. Studying such nonlinear motion both free of, and near, a surface is
important for understanding nanofluidics and hydrodynamic motion at the nanoscale.
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I. INTRODUCTION

A major success of modern optics has been the applica-
tion of light forces to microscopic and nanoscopic particles
f1g. Recent efforts have also been concentrated on applying
light torques at the micro- and nanoscale in optical traps
f2–12g. Several of these techniques use optical birefringence
and polarized light to exert torquesf5,6,10g, while others use
shape birefringence of asymmetric particles and linearly po-
larized light to exert torquesf2,11,12g. Torques can also be
applied with electromagnetic radiation other than lightf13g.
We also note that an early paper on optically trapped tobacco
mosaic virussTMV d f14g suggested that the TMV nanorods
experienced an optical torque in the trap, and oriented paral-
lel to the electric field.

Many of these optical torque papers ignore surface ef-
fects. However, it is obvious and interesting that the influ-
ence of a surface is important in understanding the motion of
objects experiencing an optical torque. Recent research on
optical torques on micro- and nanoscale objects has revealed
that the motion is very complex. For example, in our earlier
work on optically torqued nanorods, novel rocking and
chirped motions were observed for motion near a surfacef2g.
This motion is still not completely understood. Motion of
wax microdisks torqued in a linearly polarized optical trap
exhibited dynamic Hopf bifurcation, and resulted in periodic
oscillation when brought near a wallf11g. There is even dis-
agreement in the literature about whether a flat disk can be
torqued by applying linearly polarized trapping lightf10,12g.

In this work, we apply light torques to asymmetric nano-
rods using a light-polarization optical trapf2g. Here we used
a single beam trap, with light focused through the objective
of a standard brightfield microscope, to study the motion of
dielectric nanorods under optical torques. In our previous
experiments, the optical trapping and torquing laser power

was limited to 20 mW, and we could not escape the effects
of a nearby surface. To understand the complex influence of
surfaces on the motion of nanoparticles, one first has to
clearly understand the motion of the particles when they are
completely free of the surface. In this work, we have devel-
oped a method that frees us of surface effects. The resulting
motion is nonlinear, and can be understood using equations
of motion that are nonlinear, yet simple to solve in a point-
dipole approximation. The results presented here incorporate
a range of motions, including behavior near and beyond a
saddle-node bifurcationf15g. The observed motion agrees
well with our model. This model, of an asymmetric, induced
point dipole, under the influence of an optical torque is simi-
lar to a driven, damped pendulum in the high damping limit
f16g. This model applies to other interesting systems, such as
cooperative flashing by a colony of firefliesf17–20g, to the
firing and propagation of a signal pulse down a neuronf19g,
and to the phase difference across a Josephson junctionf20g.

In the next section we discuss the experiment; afterward
we review our model of the motion under the conditions of
the experiment. Next we present experimental observations
and results. Then we analyze the results and compare the
observed motion with the theoretical model. At the end, we
present some final conclusions.

II. EXPERIMENTAL SETUP

The basic optical setup consisted of an optical tweezers
apparatus that used linearly polarized light from an Ar+ laser;
see Fig. 1. Cylindrical borosilicate glass rods of average di-
ameterd=500 nm and lengths of 1–5mm were optically
trapped and torqued. The glass nanorods were suspended in
water between two microscope cover slips. The nanorods
were held transversely in the optical trap, in the middle of
the microscope slide sample, by laser light at wavelengthl
=514 nm focused through a 1003, NA=1.25 infinity-
corrected objective. Light polarization was controlled by ad-
justing the angle of a half-waveplate relative to the light’s*Electronic address: bonin@wfu.edu
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original polarization axis. The half-waveplate rotates the po-
larization direction of transmitted light by twice the angle of
rotation.

In our previous apparatusf2g, we used an Ar+ laser that
was limited to single-beam trapping powers of 20 mW. In
such a trap, we observed that if the trapped nanorods were
lifted off the microscope slide surface by a distance greater
than or about equal to their length, the rods would orient
themselves axially in the trap. This means that the rods
would have their long axis along the laser beam propagation
axis; see Fig. 2. This longitudinal orientation is energetically
favorable. To carry out our previous experiments, the rods
were kept quite close to the surface in order for the surface to
prevent them from orienting axially.

A rod in a beam with infinite waist will orient along the
electric field direction. This is confirmed by the early Ashkin
work on TMV rods f14g, which indicates that smaller rods
s300 nm longd will orient along the field in a diffraction-
limited beam waist spot. This evidence suggests that by in-
creasing the beam waist, it will be less energetically favor-
able for a rod to be oriented vertically. Hence, to circumvent
our previous restriction of trapping the rods near a surface,
we increased the beam waist at trap focus from the nominal
minimum of 200 nm, to a value significantly larger. This was
achieved by collimating the laser beam to a beam waist of
0.650±0.015 mm at the entrance aperture of the trapping
objective. This value was determined by fitting a Gaussian

function to the beam profile measured using a CCD camera
placed at the location of the objective’s entrance aperture.
Neutral density filters were used to reduce beam irradiance to
below the saturation level of the camera. The objective’s
entrance aperture diameter is 8 mm. By significantly under-
filling the objective’s aperture, the beam waist at the focus is
correspondingly increased. We estimate, from the waist mea-
sured at the entrance aperture, that the beam waist at trap
focus was 0.554mm. This can be compared to the
diffraction-limited case, where a beam waist at the objective
entrance ofDentrance/4=2 mmwould produce a waist at the
trap focus of 0.2mm f21g. The latter number is what is ex-
pected for an objective of NA=1.25slike oursd and is the
result of diffraction theory, so it is somewhat smaller
s.85%d than the Rayleigh criterion result. Since increasing
the trapping focal waist decreases intensity, we used a more
powerful Ar+ laser than in the previous experiments, and we
used one capable of delivering up to 500 mW of power at
514 nm. This method succeeded in trapping and torquing
nanorods well away from the glass slide and coverslip sur-
faces.

III. THEORY OF THE MOTION

The basic optical setup consists of an optical tweezers
apparatus that uses linearly polarized light. A sketch of a
nanorod in such a light field in the trapping plane is given in
Fig. 3. Nearly all previous light-driven torquing experiments
f3–5,7–9,12,22g, involving micron-sized objects, can be un-
derstood with ray optics. In contrast, here the important par-
ticle dimensiond is as small as half the wavelength of light,
in the regime between Rayleighsd!ld and ray opticssd
@ld. Since d&l, and since we plan to investigate even
smaller spatial regimes, we discuss the basic light-particle
interaction in the Rayleigh limit. We assume the trapped par-
ticle is a homogeneous, asymmetric, nonabsorbing dielectric
object immersed in a dielectric liquid. The linearly polarized
electric field of the laser beamE induces a dipole moment
p=aJ ·E, whereaJ is the polarizability tensor of the nanopar-
ticle. The light field applied to an asymmetrically shaped
particle induces a dipole moment that is not parallel to the
inducing electric field.

FIG. 1. sColor onlined Diagram of the optical layout of the op-
tical tweezers. Rotation of the linearly polarized light by rotation of
a half-wave plate applies a torque to the nanorods in the sample
between the two objectives.

FIG. 2. A sketch of the orientations possible for nanorods de-
scribed here. The nanorods are trapped in a focused Gaussian beam
propagating down. Insad, the nanorod is transversely oriented with
respect to the light propagation axis. Insbd, the nanorod is axially
oriented.

FIG. 3. A sketch of the light torque geometry. Here the induced
dipole p will move to align with the electric fieldE to minimize
energy. Hence, a torquet=p3E exists about an axis out of the
plane of the paper. The light propagation direction is into the paper.
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To minimize energy, the induced dipole momentp wants
to align with the field; see Fig. 3. The optical torque, given
by t=p3E, is proportional to the polarizability difference
Da=ai−a', whereai, a' are the polarizability components
parallel and perpendicular to the long axis of the rod. In the
Appendix, we briefly derive the relation between the torque
and the polarizability anisotropyDa in the Rayleigh particle
regime.

The other torque acting on the nanorodsswhen they are
movingd is that due to Stokes drag by the mediumswaterd.
From Newton’s second law, we can write the basic equation
of motion as

I
d2

dt2
u = N sinf2sVt − udg − g

d

dt
u. s1d

HereI is the moment of inertia of the nanorod;u is the angle
of the nanorod axis with respect to a fixed laboratory frame
axis; N=−DaE0

2/4 is the torque amplitudestime-averaged
over one optical cycle, see the Appendixd; V is the angular
rotation frequency of the light polarization axis; andg is the
angular drag coefficient from Stokes law for rotation in a
viscous mediumf23g. The quantityE0

2 is the squared magni-
tude of the electric field at the location of the trap.

The equation of motion can be put into dimensionless
form with the following changes: introduce the parameter
Vc=N/g, defineu=2Vct, go to a corotating framesrotating
with the angular frequency of the rotating electric field po-
larization,Vd, and definef=2sVt−ud. With a little algebra,
we can then write Eq.s1d as

2IVc

g
f̈ + ḟ =

V

Vc
− sinf, s2d

where each overdot indicates a derivative with respect tou,
i.e.,d/du. Under our experimental conditions, where the mo-
ment of inertia of the object is extremely small, the first term
on the left hand sidesthe inertial termd is entirely negligible.
For example, typical experimental values for the coefficients
in this term areI =3310−28 kg m2 sglass nanorod length of
3800 nm, radius of 250 nmd, Vc=30 rad/s, andg=3.8
310−20 kg m2/s. These values make the coefficient small,
e.g., 2IVc/g<4310−7. For comparison,V /Vc<0.1−10.
Hence, the inertial term in Eq.s2d can be neglected in our
analysis.

We now consider solutions to the equation of motion,
which has the form

ḟ =
V

Vc
− sinf. s3d

This is a nonlinear first-order differential equation describing
the angular motion of the nanorods in a rotating frame. Equa-
tion s3d, which is very close to the model of a driven,
damped, simple pendulum when the damping dominates the
inertia, has been discussed in the literaturef15g and in text-
booksf20g. Actually, Eq.s3d is a model for the synchroniza-
tion of the flashing of firefliesf17,18g and for the phase
difference in the flow of current in a Josephson junctionf20g.
The character of the solution to Eq.s3d differs depending on
whether the driving frequencyV is below or above the “criti-

cal” frequency Vc. In the case whereV is below Vc
sV /Vc,1d, there are two solutions, one stable and one un-

stable. The stable solution is forḟ=0, and f
=arcsinsV /Vcd. In the laboratory frame, where the nanorod
angleu=Vt−f /2, the nanorod angleu rotates at the same
rate as the laser polarization,V, but lags in phase byf /2.
Physically, the rod continuously and smoothly rotates at the
same rate as the laser polarization, i.e., its rotation isphase-
lockedto the polarization rotation. As the polarization rota-
tion rate increases, thenVc/V→1. Here, the stable and un-
stable points converge to form a saddle-node bifurcation
f15g. Physically, the polarization rotation rate equals the criti-
cal frequency, i.e.,V=Vc.

In the second case, whereV is aboveVc sV /Vc.1d, Eq.

s3d shows thatḟ.0, which means the solution is periodic
and exhibits a limit cycle in phase spacesḟ versusfd. In the
physical, laboratory frame,ḟ.0 means thatVt.u and so
the laser polarization rotates more rapidly than the nanorod.
Physically, this will cause the laser polarization to move far
enough ahead ofu to flip the direction of torque, which will
cause the nanorod angular velocity to decrease and become
negative. Hence the nanorod will rotate in a direction oppo-
site to its original direction, i.e., it will ‘flip back.” This
cycle, of increasing angle with time, punctuated by “flip-
backs,” where the angle decreases with time, continues with-
out change as long as experimental conditions remain the
same.

IV. RESULTS

The data consisted of a stream of video images that could
be analyzed after the experiment ended. Figure 4 shows
a montage of images corresponding to the motion of a
3.8-mm-long nanorod being driven at a laser polarization fre-
quency that is below the critical frequency, i.e.,V,Vc. This
nanorod was 24mm above the bottom surface of the sample
and about 7mm from the nearest top surface. Hence it was
more than 20 radii away from the closest surface, and surface
effects are negligible.

Figure 5 shows a sequence of images that corresponds to
the motion when the laser polarization rotation frequency
exceeds the critical frequency, i.e.,V.Vc. This sequence is
a small set of a much larger set of 160 images that recorded
the motion under the same conditions.

V. ANALYSIS AND DISCUSSION

The resultsssequences of images for a given laser polar-
ization rotation rateVd were analyzed frame-by-frame using
an angle tool in an imaging software program. This tool was
used to determine the angle of the rod in each image with
respect to the horizontalx axis. This angle corresponds tou
in Fig. 3. The time difference between two adjacent images
was about 33 ms, since the frame rate of the camera was
29.97 HzsRS-170 standardd. Hence the data extracted from
each frame of a given set of imagessfixed Vd were the time,
t, and the rod orientation angle,u, at that time. Tables of the
resulting time-angle pairsst ,ud were then used to plot the
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time-dependent evolution of the laboratory orientation of the
nanorods under the influence of the optical torque. Here we
present plots of the motion of the rod,u versust, for the two
different classes of the motion:sid linear, phase-locked mo-
tion, where V,Vc, and sii d nonlinear motion, whereV
.Vc.

Case 1: Phase-locked motionsV,Vcd. In Fig. 6, we have
plotted the rod angle versus time,u versust, under the con-
dition where V=2p34.06 Hz and Vc.2p34.8 Hz sV
,Vcd. The method used to deduce a value for the critical
frequencyVc is given below. The solid line in Fig. 6 repre-
sents the best linear fit to the data. This line exactly coincides
with the line corresponding to the electric field polarization
angle versus timesVt versus td, which has a slope ofV
=2p34.06 Hz, compared to the best-fit slope of 2p
34.057 Hz. Since the two slopes agree to better than a part
in 2000, it is clear that the rod’s motion follows the rotation
of the electric field polarization with high fidelity. Data at
other values ofV,Vc agreed equally well with the model in
each case.

Case 2: Nonlinear motionsV.Vcd. In Fig. 7, we have
plotted the rod angle versus time,u versust, under the con-
dition whereV=2p35 Hz andVc.2p34.8 Hz sV.Vcd.
The solid line represents the electric field polarization angle
versus timesVt versustd. Notice that the rod motion here
differs in two key ways compared to the first case. First, the
average slope of the rod angle is significantly lower than the
slope of the electric field polarization angle. Second, note
that there are repeating occurrences of regions where the
slope of the rod angle becomes negative. These regions
where the rod angle decreases are labeled “flipbacks.” Dur-

ing a flipback, the rod momentarily reverses direction. The
motion appears basically “linear,” and the amplitude and fre-
quency of the flipbacks change with time. There are shorter
sections of the data in which the flipbacks are periodic, as
discussed below. However, for conditions near the critical
frequency, the periodicity of the flipback regions is irregular
over long times, for reasons that will be described shortly.
When the laser polarization frequency is well above the criti-
cal frequency, flipbacks are more periodic and more frequent,
resulting in an even loweru versust slope.

Note that both regions of motion are solutions to the non-
linear equation of motion Eq.s3d. However, we classify the
motion as linear or nonlinear using the following rule:linear
motion refers to the motion where the angle of the rod
changessincreases or decreasesd linearly with time; nonlin-
ear motion refers to the motion where the angle of the rod
changes nonlinearly with time.

A. Specific case:VœVc

To better understand the motion, to compare our observa-
tions to theory, and to estimate a value ofVc, we consider a
short part of the motion in the nonlinear casefcase s2d
aboveg. We study data whereV is close to the critical fre-
quencyVc. In Fig. 8, we have selected out the rod angle
versus time points from Fig. 7 for the region 2.5 s, t
,3.7 s. These data have been shifted so their origin is at
time t=0 in Fig. 8. The solid line in Fig. 8 corresponds to the
best fit of the solution to Eq.s3d to the data in this region. In
the fit, three parameters were varied: the angular polarization
rotation ratesVd, the critical frequencysVcd, and a constant

FIG. 4. A sequence of images showing the motion of a nanorod under the influence of the light torque with a phase-locked response, i.e.,
the rod keeps a fixed phase difference with respect to the rotating polarization of the light. The motion is counterclockwise from left to right,
as indicated by the crossess1d that follow one end of the nanorod for all 16 images. We show one complete period and in this case the
angular polarization rotation rate wasV=2p32 Hz. Scale bar corresponds to 4mm.

FIG. 5. A sequence of images showing the motion of a nanorod under the influence of the light torque with a nonphased response, i.e.,
the rod is not moving in phase with the rotating polarization of the light. The motion is counterclockwise from left to right, as indicated by
the crossess1d that follow one end of the nanorod for all 16 images. It is clear that the nanorod periodically reverses direction, as in frames
7 and 15 here. The angular polarization rotation rate wasV=2p35 Hz. Scale bar corresponds to 4mm.
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phaseb, i.e., f=2sVt−ud+b in Eq. s3d. The fit was done
using a nonlinear least-squares Marquardt-Levenberg tech-
nique inMATLAB using the ode45 differential equation func-
tion to numerically solve the nonlinear differential equation
Eq. s3d each time. The final values for the fitting parameters
wereV=2p35.14 Hz,Vc=2p34.90 Hz, andb=1.65 radi-
ans. For these data, the electric field polarization rotation rate
was set to 2p35 Hz, according to the setting on the pulse
generator driving the stepper motor that determines the rota-
tion rate of the half-waveplate. Hence the fitted value for this
parameter ofV=2p35.14 Hz is within 3% of the value
expected by the setting on the motor driving the half-
waveplate. It appears that the theory fits the data rather well
for appropriate values of the parameters. Hence, in both the
linear and nonlinear motion regimes, the model summarized
by Eq. s3d does an excellent job.

We have now provided enough analysis of the data to
discuss the motion in Fig. 7 in complete detail. As already
mentioned, there are sections where the motion is periodic,
sections that have irregular or changing periods, and there is
even a region that is linearsin the time range 1.2 s, t
,1.7 sd. Note that this linear region has a slope identical to
the slope of the laser polarization angle line. These irregu-
larities in the period of the nonlinear motionfcharacterized
by solutions to Eq.s3dg and the linear motion region present
on the same curve indicate that the critical frequency, or the
laser polarization frequency, change during a data run. For
example, a changing critical frequency could explain the data
plotted in Fig. 7. For most of the data, the motion is nonlin-
ear andV.Vc. However, for the linear motion in the time
range 1.2 s, t,1.7 s, the critical frequency could have risen
above the laser polarization frequencyV to produce the
phase-locked motion typical of the linear motion regime.
Thus, we need to discuss the experimental conditions that
could lead to changes inV or Vc during a data run.

First, we consider possible changes in the laser polariza-
tion frequencyV. Changes inV can occur due to stepper
motor variations in rotation rate. The stepper motor that ro-
tates the half-wave plate is driven by square pulses from a
frequency generator. These pulses are periodic to better than
1%. However, all motors, including the one used here, have
resonant frequencies at which the motor body vibrates sig-

nificantly, and mechanical noise is coupled into the table or
mount that holds the stepper motor. A key indicator that the
motor-half-waveplate system worked very periodically in our
setup is the data in the linear regime; see Fig. 6. Here the
data show a very linearu versust motion response, which
could only result if the motion of the motor-half-waveplate
system is very linear. However, note that the motor response
differs at different frequencies.

Second, we consider possible changes in the critical fre-
quencyVc. Changes inVc=N/g can occur due to changes in
the torque amplitudeN or drag coefficientg. It is unlikely
that the drag coefficient changes during a run, since it de-
pends on very stable physical parameters: rod length, rod
diameter, and fluid viscosity. In contrast, it is almost assured
that the torque amplitudeN=−DaE0

2/4 changes under the
conditions of the experiment. The irradiance of the laser can
vary due to thermal drift, pointing direction drift, or varia-
tions, or due to variations in the power supply electronics
driving the laser plasma tube. These variations are estimated
to be less than 3% during the time of our experimentssabout
2–3 hd. Two optical elements in our experiment also gave
rise to variations in laser irradiance delivered to the nano-

FIG. 6. A plot of the nanorod orientationu as a function of time
t for linear motion. HereV=2p34.06 Hz andVc.2p34.8 Hz,
so V,Vc. The solid line represents the best linear fit to the data.

FIG. 7. A plot of the nanorod orientationu as a function of time
t for nonlinear motion. In addition, we have plotted the laser polar-
ization rotation angleVt during the same time. This corresponds to
the case whereV=2p35 Hz andVc.2p34.8 Hz.

FIG. 8. A plot of the nanorod orientationu as a function of time
t. The solid curve corresponds to a nonlinear least-squares fit to the
data. The final values for the fitting parameters wereV=2p
35.14 Hz,Vc=2p34.90 Hz, andb=1.65 ssee text for detailsd.
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rods. The half-waveplate would vary the irradiance at the
sample by ±2.5%. This value was determined by measuring
the laser power transmitted through the microscope objective
with an accurate power meter. The transmitted power, mea-
sured as a function of the half-waveplate angle, systemati-
cally varied by 5%. Another optical element present in the
experiment, but not shown in Fig. 1, was a nonpolarizing
beamsplitter. Placed just after the half-waveplate, it was used
for monitoring and alignment purposes. The measured varia-
tion in laser power as a function of laser polarization angle
was also 5%s±2.5%d. The variations in laser power, and
hence critical frequencyVc, could easily explain the varia-
tion in the periodic motion under nonlinear motion condi-
tions, or under conditions near the critical frequency. We
reiterate that, at laser polarization frequencies well above the
critical frequency, straight sections whose slope equalsV do
not occur, and the motion has periodic and more frequent
flipbacks that significantly reduce the slope of theu versust
data.

Finally, we mention another way to determine the critical
frequency under the existing experimental conditions. It re-
quires analyzing data over the whole range of laser-
polarization-rotation frequenciesV. Below the critical fre-
quency, the rod rotation frequency follows the driving, laser-
polarization-rotation frequency and sodu /dt=V sV,Vcd.
However, whenV.Vc, thendu /dt is not constant, but the
average frequencykdu /dtl can be determined from a linear
fit to the u versust data. Then curves like Figs. 6 and 7 can
be summarized in a plot ofkdu /dtl versusV over the whole
range of laser-polarization-rotation frequencies. The result-
ing curve ofkdu /dtl versusV is given in Fig. 9. It can be
shown that forV.Vc

Kdu

dt
L = V − ÎV2 − Vc

2. s4d

The solid curve in Fig. 9 in the regionV.Vc corresponds to
Eq. s4d. For V,Vc, the slope is unity. By fitting the whole
range of data to these two functions,Vc can be determined.
In this case we obtain a value slightly lower,Vc=2p
34.73 Hz, than theVc determined by fitting the data in Fig.
8, whereVc=2p34.90 Hz.

B. Effect of Brownian motion

It is important to discuss how Brownian motion would
affect the observations and results presented here. Brownian
motion refers to the random motion of a particle suspended
in a medium due to the random collisions of medium par-
ticles with the object. To determine whether noise from
Brownian motion is important, we need to estimate the
change in angle due to Brownian motion during the time it
takes to record one images1/30 sd. For a one-dimensional
random walk, the mean-square angle of rotation during a
time t is f23g

ku2l = 2Drt, s5d

where the rotational diffusion constantDr is

Dr =
kT

g
. s6d

Herek is Boltzmann’s constant,T is the temperature, andg
is the rotational drag coefficient, identical to the term found
in Eq. s1d. For a rod of lengthL and radiusr, the rotational
drag coefficient is

g =
ph

3

L3

lnS L

2r
D − 0.66

, s7d

whereh is the viscosity of the surrounding medium. Using
the usual numbers for viscosity of water, and the dimensions
for the rod heresL=3.8 mm and radius=250 nmd, we find
g=3.7310−13 g cm2/s, and that Dr =0.11 rad2/s. Hence,
during the time it takes to record one imagesintegration time
of a frame, 33 msd, the rod has an rms rotation ofÎku2l
=0.085 radians/ frame. For comparison, close to the critical
frequency the rod rotation rate due to the optical torque is
about 30 rad/s, which is about 1 radian each frame. Hence,
rotation due to the light torque is a factor of 12 higher than
the corresponding rotation due to Brownian motion during a
given time interval. For perspective, note that the size of a
data point symbol in Fig. 6ssolid circlesd corresponds to an
angle of 0.85 radians. This is 10 times larger than the noise
due to Brownian motion during the time of a single frame for
such a data point. Hence the Brownian noise contributes in a
small way to the overall noise displayed in the figures.

As a final note, we briefly mention the importance of
using longer nanorods to observe the linear and nonlinear
behaviorslinear below, and nonlinear above, the critical fre-
quency Vcd. In fact, smaller rods remained in the region
below the saddle node in all the small rod cases we tried

FIG. 9. Plot of the average nanorod rotation ratekdu /dtl versus
the laser-polarization-rotation rateV. For values ofV,Vc, the
dependence is linear. ForV.Vc, the rod rotation rate declines
monotonically asV is increased. In both regions, the solid curves
represent the fitted function; forV,Vc, the function is linear and
for V.Vc, the fitted function is given in Eq.s4d. Vertical error bars
are about 1% of they values, while the horizontal error bars are 3%
of x values.
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sgenerally their length was 1mm or lessd. Hence, smaller
rods did not exhibit the transition through the saddle node
bifurcation. The reason for this is that longer rods have a
much higher rotational drag coefficientg sinceg~L3, where
L is the rod length, see Eq.s7d. For larger rods, this has the
effect of lowering the critical frequency into an experimental
range where the saddle node bifurcation can be observed.
This also has the advantage of helping decrease Brownian
rotation, since the diffusion constant depends inversely on
drag coefficientg. Also the data analysis is easier with a
larger object. We could also have lowered the torque ampli-
tudeN to get into a range where the transition behavior was
apparent. However, this has the deleterious effect of also
lowering the trapping depth, which would make the relative
importance of Brownian motion greater. In addition,g could
have been increased by increasing the viscosity of the me-
dium. For example, a 50% glycerin-water mixture would in-
crease the viscosity a factor of 2.5. However, the optical
properties of the sample would change and the trapping
depth would have been lowered. Finally, the polarization ro-
tation rateV could also be used to put the motion into the
range to see the transition behavior. This would have re-
quired using a different motor or different gearing to increase
or decrease the rotation rate.

VI. CONCLUSIONS

We have presented detailed experimental results on the
nonlinear motion of glass nanorods optically torqued by ro-
tating linearly polarized light. The experiments were con-
ducted far from surfaces, making the results extremely useful
for understanding the basic physics of optically torqued na-
norods. We have also provided an approximate point-dipole
model for the optically torqued nanorods that gives good
agreement with experimental results. Our observations, and
the nonlinear equations of motion, show that there are two
distinct types of motion: phase-locked rotation and flipback
motion. For driving frequencies beyond the critical fre-
quency, the motion exhibits nonlinear, flipback oscillations.
This model system will serve as a benchmark for understand-
ing the motion in more complex regimes, such as motion
near surfaces. Already, work on optically trapped disks has
provided some valuable insights into the rheological behav-
ior of polymer solutions at the nanoscalef24g.
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APPENDIX

In this appendix, we derive an expression for the light
torque on an induced point dipole; see Fig. 3. Consider the

simple case of an applied electric field that is a plane wave of
the form

Esr ,td =
1

2
fE0sr de−ivt + c.c.g, sA1d

where the symbol c.c. refers to the complex conjugate of the
term that came before it. The electric dipole induced by this
field can then be written

psr ,td =
1

2
fp0sr de−ivt + c.c.g. sA2d

The amplitudep0sr d of the oscillating dipole is given by

p0sr d = aJ ·E0sr d, sA3d

whereaJ is the polarizability tensor. A tensor description of
the polarizability is important because the torque on our par-
ticles arises from the property of shape birefringence. Asym-
metrically shaped particles, such as rods, disks, and ellip-
soids, have differing polarizabilities along the principal axes.
For details on shape birefringence, consult an advanced text
on classical electrodynamics or light scatteringf25–27g. It is
important to note that the tensor polarizability causes the
induced dipole moment to point in a direction that is not
along the electric field direction; see Fig. 3. The polarizabil-
ity tensor can be expressed as a matrix, which becomes di-
agonal if we consider the opticalsbodyd axes of the glass
rod; see Fig. 10. Thus in this appendix the coordinate system
will correspond to the body axes given in Fig. 10. For a
cylindrical glass rod, we can write the polarizability tensor in
this frame as

aJ = 3ai 0 0

0 a' 0

0 0 a'

4 . sA4d

The torque on a point dipole in an electric field is given
by

t = pstd 3 Estd. sA5d

To evaluate Eq.sA5d for our geometry, define the instanta-
neous angle between the electric field and the point dipole to
be b=Vt−u ssee Fig. 3d. Writing both the field amplitude
E0sr d and the dipole amplitudep0sr d in terms of the body
axes of the rodssee Fig. 10d, we have

FIG. 10. Sketch showing the tensor components in the body
frame of the rod.
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E0 = E0xêx + E0yêy = E0scosbêx + sinbêyd sA6d

and

p0 = axxE0xêx + ayyE0yêy = aiE0xêx + a'E0yêy. sA7d

The torque Eq.sA5d is then

pstd 3 Estd = * êx êy êz

aiE0x a'E0y 0

E0x E0y 0
*cos2 vt sA8d

=êzscos2 vtdE0xE0ysai − a'd sA9d

=êzE0
2scos2 vtdsai − a'dcosb sinb.

sA10d

Since the angleb changes very slowly on an optical time
scale, we perform a time average of the torque over one
optical cycle,T=2p /v. This time average, denoted by angu-
lar brackets, giveskcos2 vtl=1/2. Using this, the trigono-
metric relation cosb sinb=s1/2dsin 2b, and substitutingb
=Vt−u gives an expression for the time-averaged torque
stime-averaged over one optical cycled

ktl =
1

4
E0

2sai − a'dsinf2sVt − udgêz. sA11d

This expression is the first term on the right-hand side of Eq.
s1d.
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